skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hou, Songyan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Current integrated optical isolators have limited bandwidths due to stringent phase-matching, resonant structures, or absorption. We demonstrate broadband optical isolation in thin-film lithium niobate that simultaneously achieves∼100 nm isolation bandwidth at visible and telecom wavelengths. 
    more » « less
  2. Optical isolators are an essential component of photonic systems. Current integrated optical isolators have limited bandwidths due to stringent phase-matching conditions, resonant structures, or material absorption. Here, we demonstrate a wideband integrated optical isolator in thin-film lithium niobate photonics. We use dynamic standing-wave modulation in a tandem configuration to break Lorentz reciprocity and achieve isolation. We measure an isolation ratio of 15 dB and insertion loss below 0.5 dB for a continuous wave laser input at 1550 nm. In addition, we experimentally show that this isolator can simultaneously operate at visible and telecom wavelengths with comparable performance. Isolation bandwidths up to ∼100 nm can be achieved simultaneously at both visible and telecom wavelengths, limited only by the modulation bandwidth. Our device’s dual-band isolation, high flexibility, and real-time tunability can enable novel non-reciprocal functionality on integrated photonic platforms. 
    more » « less
  3. Second-order optical nonlinearity is widely used for both classical and quantum photonic applications. Due to material dispersion and phase matching requirements, the polarization of optical fields is pre-defined during the fabrication. Only one type of phase matching condition is normally satisfied, and this limits the device flexibility. Here, we demonstrate that phase matching for both type-I and type-II second-order optical nonlinearity can be realized simultaneously in the same waveguide fabricated from thin-film lithium niobate. This is achieved by engineering the geometry dispersion to compensate for the material dispersion and birefringence. The simultaneous realization of both phase matching conditions is verified by the polarization dependence of second-harmonic generation. Correlated photons are also generated through parametric down conversion from the same device. This work provides a novel approach to realize versatile photonic functions with flexible devices. 
    more » « less